

HEAD OFFICE

P.O.Box 40247 , Jeddah 21499 Saudi Arabia Tel & Fax: 920007992

Website: www.esp.com.sa

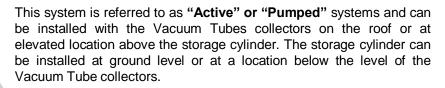
Administration Sales / Services

Technical Services Projects

K.S.A DISTRIBUTERS

JEDDAH:

Earth Gate Trading Est.
 Madinah Road


Tel: 02-2751438 Fax: 02-2751438

E-Mail: sales@esp.com.sa

PRODUCTS

"ACTIVE" OR "PUMPED" SYSTEMS

The storage cylinder is of two types:

"1E" Storage Cylinder with "One Heat Exchanger"

"2E" Storage Cylinder with "Two Heat Exchangers"

All the above cylinders are insulated with high density CFC free polyurethane foam and encased in galvanized heat painted iron

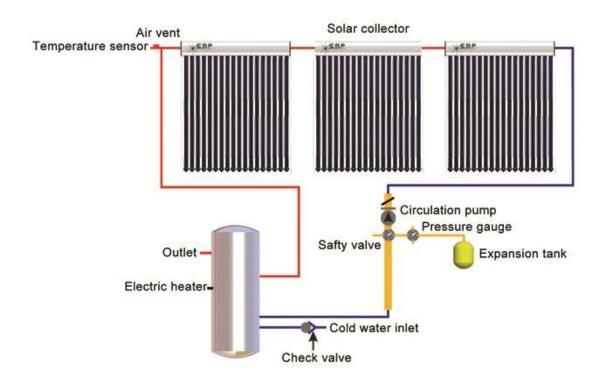
All Storage Cylinders is manufactured in several storage capacities:

200 liters

300 liters

400 liters

500 liters


All types of cylinders are suitable for mains pressure connection with maximum inlet pressure of 8 bar

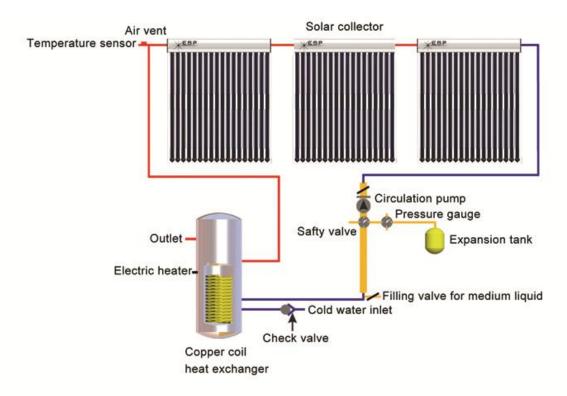
Vacuum Tubes are manufactured and supplied to suit both the open circuit and closed circuit systems.

"UP" Vacuum Tubes "High Pressure" suitable for both "Open & Closed circuit" systems.

"ACTIVE" OR "PUMPED" SYSTEMS

"PUMPED" SYSTEM (Open Circuit):

The "active" or "pumped" system where the vacuum tubes collectors are installed above the storage cylinder. An "open circuit" system, It is designed to:


- Provide the flexibility to design the home with the collectors on the roof and the storage cylinder at a lower level than the collectors.
- Limited roof area, where a "thermosiphon" system cannot be installed.
- Roof with limited structural strength to support the total weight of a "thermosiphon" system.

How does it work:

The system is fitted with a sensor at the collector outlet and another located on the storage tank. A temperature difference of 8°C between the two sensors activates a circulating pump that moves the water from the bottom of the storage cylinder to the collectors. The solar energy from the vacuum tubes collectors is absorbed by the water and returned to the storage cylinder. The pump continues to circulate the water until the temperature difference falls to 4°C. This system is designed to be used with (UP-Vacuum Tubes Collectors) in areas of medium – high solar gain without frost where the temperature dose not fall below 10°C and with good water quality.

"ACTIVE" OR "PUMPED" SYSTEMS

"PUMPED" SYSTEM (Closed Circuit):

The "active" or "pumped" system where the vacuum tubes collectors are installed above the storage cylinder. An "Closed Circuit" system, It is designed to:

- Provide the flexibility to design the home with the collectors on the roof and the storage cylinder at a lower level than the collectors.
- Limited roof area, where a "thermosiphon" system cannot be installed.
- Roof with limited structural strength to support the total weight of a "thermosiphon" system.
- Cold Climate or frost prone regions.
- ·Large varying hot water demands.

How does it work:

The system is fitted with a sensor at the collector outlet and another located on the storage tank. A temperature difference of 5°C between the two sensors activates a circulating pump that moves the "Closed Circuit" fluid in the storage cylinder heat exchanger to the collectors. The solar energy from the vacuum tubes collectors is absorbed by the fluid and returned to the storage cylinder heat exchanger. The pump continues to circulate the fluid until the temperature difference falls to 2°C. This system is designed to be used with (UP-Vacuum Tubes Collectors).

"ACTIVE" OR "PUMPED" SYSTEMS

IMPORTANT INFORMATION

- We must use one of this devices ("Feeding & pressure tank" OR "Remote control system") with each ESP-Solar Energy thermosiphon unit to control the feeding & pressure of the unit.
- Don't connect the feeding connection directly to the storage cylinder, the vacuum tubes will be damage with the pressure.
- The remote control system is in-door system, Don't install it out door.

APPLICATIONS

The "Active" or Pumped ESP-Solar Energy systems can be used in domestic hoses, Villa's, Palaces, Restaurants, Health Clinics, Health clubs, Hotels, Hospitals, Factories, and similar establishments.

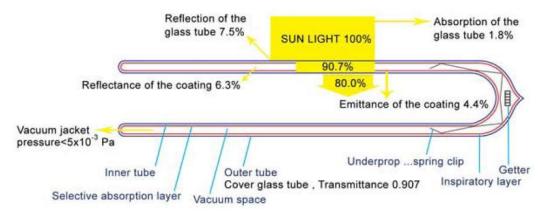
Mostly This system are suitable for facilities where large volume of water are required.

VACUMM TUBES OR COLLECTORS

VACUMM TUBES 58/1800:

They are the tubes that absorb sunray and convert it to heat for use in heating water, either directly (thermal siphon) or indirectly (thermal copper pipes).

These tubes were first used in Germany then spread to Canada, Australia and U.K. and China and Other world countries gradually.

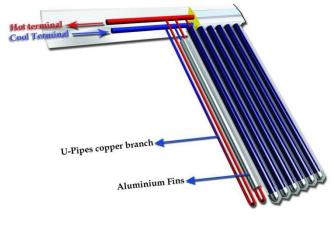

There are many types of vacuum tubes which are used in a number of fields for heating water. Double glass pipes are the most common in use.

This type is usually chosen for its easy use and Low cost (practical apparatus easily used) and for its high output and long life.

The long life of the vacuum tube from (ESP-Solar Energy) comes from the high stability of the tube characteristics such as (absorption capacity – insulation – reflection) which do not change with the passage of time, a thing resulting from 36 stages of manufacturing processes and testing which the tube passes through in order to realize this quality.

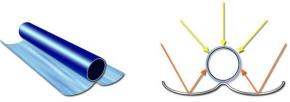
VACUMM TUBES SPECIFICATIONS:

- The outer pipe is transparent that allows sunray and light to penetrate it easily and with a very low reflection rate because it is cylindrical in shape and as a result sunray falls vertically on the pipe at all times.
- The inner pipe is electro-statically plated with three layers:
 - 1-The first layer: a metal one its function is to absorb the infrared ray which enters the pipe.
 - 2-The second layer: Porcelain one which prevents the reflection of the sunray entering the pipe.
 - 3-The third layer: Carbon film its function is to absorb sunray.
- The space between the two pipes is vacuumed at a rate larger than (5x10⁻⁴) Pascal, which forms a highly efficient insulating layer which secures the high duty of the pipe, in the way that absorbed sunray shall not be lost.
- The insulation capacity of the pipe is high so that the inside temperature of the pipe may reach 150°C while the outer pipe is cool on touch. This Means that the vacuumed pipes can work at heavy duty even at very low temperature, while the solar flat plate cannot operate in such climates.



U-PIPES VACUMM TUBES OR COLLECTORS

U-PIPES VACUMM TUBES 58/1800:


This collector is designed for use only with "Active" or "Pumped" systems, the vacuum tubes absorb energy from the sun's rays and convert it into heat which is transferred by the aluminum fins to the copper U-Pipes, the U-Pipes then pass it on to a liquid or water inside, which is forced to circulate by a circulation pump, thus heating the water in the tank.

There are many types of vacuum tubes which are used in a number of fields for heating water. Double glass pipes are the most common in use.

This type is usually chosen for its easy use and Low cost (practical apparatus easily used) and for its high output and long life.

The long life of the vacuum tube from (ESP-Solar Energy) comes from the high stability of the tube characteristics such as (absorption capacity – insulation – reflection) which do not change with the passage of time, a thing resulting from 36 stages of manufacturing processes and testing which the tube passes through in order to realize this quality.

High efficiency also comes from the innovative large surface reflectors which increases efficiency by 15% as compared to other systems.

The functionality of the ESP-Solar Energy U-Pipes solar collectors in all seasons makes it the top choice of solar collectors in the world due to the following reasons:

- High efficiency up to 80%.
- Little space required less than 5 times from the traditional collectors.
- Highly stable equipment and its resistance to climate factors.
- · Long-lasting design.
- The ability to connect in a series and set in parallel mode.

U-PIPES VACUMM TUBES OR COLLECTORS

U-PIPES VACUMM TUBES 58/1800 SPECIFICATIONS:

Specifications	Unit	Content			
Number of Vacuum Tubes	Piece	10	30		
Contour Aperture Area	m²	1.84	3.5	5.3	
Diameter & Length of Tube	mm		58 * 1800		
Tube Glass	mm	В	orosilicate / 1.6m	m	
Coil Material & Diameter	inch		3/8"		
Valid Absorption Length	m		1.715		
Reflectors	mm	Sta	inless Steel / 0.4	mm	
Length & Height of Tube	mm		2000 * 150		
Width	mm	920 1750		2560	
Volume of the Fluid	L	3.7	7.2	10.8	
Absorption	%	More Than 94%			
Emission	%	Less Than 7%			
Max. Fluid Pressure	MPa	0.9 MPa / 9 bar			
Operation Fluid Pressure	MPa	0.6 MPa / 6 bar			
Max. Stagnation Temperature	Degree	252 C°			
Max. Service Temperature	Degree	95 C°			
Insulation Thickness	mm	40-50			
Distance Tube to Tube	mm	83			
Min. Collector Angle	Degree	0			
Max. Collector Angle	Degree	180			
Weight-Empty	kg	45 80 110			

Step By Step Process

This Section – SYSTEM SELECTION is dedicated to selecting an appropriate system for a particular project.

A step by step method guides the reader through the selection process

The relevant information sheets are included in this section as a quick guide and reference.

- Step 1: Determine Hot Water Requirement. Refer "Load Calculation"
- Step 2: Load Calculation "EXAMPLES"
- Step 3: Important Pointers.

LOAD CALCULATIONS

The hot water requirement for showers, hand washes, dish washing, laundry etc, are based on industry experience. The table below is a guide to determine the hot water demand for most facilities.

HOT WATER REQUIREMENTS GUIDE:

DEVICE	LOCATION	HOT WATER REQUIREMENTS IN LITRES @ 60° C	
	Aged Homes	18	Per Person
	Domestic Dwelling	18	Per Person
Shower	Caravan Parks	18	Per Person
	Hotels/Motels	18	Per Person
	Mining Towns	25	Per Person
	Domestic Dwellings & Hotels	60	Per Person per day
Baths	Hand Wash Domestic Dwellings	2	Per Person per day
	Offices	1	Per Person per day
	Hotel Guests & Staff	5	Per Person per day
Dish Washing	Domestic Dwellings	7	Per Sink Full
Sinks	Hotels/Motels	10	Per Sink Full
Glass Washers	Hotels/Motels/Bars	2	Per Person
Glass Washers	Restaurants	5	Per Person
	Domestic Dwellings	10	Per Person
Lounder	Mine Site	15	Per Person
Laundry	Hotels/Motels	10	Per Person
	Hospitals	10	Per Person
	Good Condition-Small (< 100m)	Add 10%	To Total Demand
Ring Main Losses	Good Condition-Large (>100m)	Add 15%	To Total Demand
	Large or Poorly Insulated	Add 30%	To Total Demand

LOAD CALCULATIONS

IMPORTANT POINTERS:

To determine the hot water demand for new project or existing facilities the above table can be used as a guide. This table has been devised based on industry experience and provides an estimate for the designer to select an appropriate system.

The best and most recommended method for accurately determining the hot water demand or consumption of an existing facility is to measure the actual consumption. Over a two weeks period, record the water and energy consumption of the existing hot water service by installing relevant meters as detailed below:

- Water Meter at the cold inlet to the existing hot water service to measure the water consumed in liters.
- Hour Meter to the electric element to record the number of hours the element is on. This figure along with the element rating in kilowatts will give the amount of electric energy used.
- •Gas Meter to measure the amount of gas consumed if the existing hot water service is a gas fired boiler.
- Record the oil consumption if the existing hot water service is an oil fired boiler.
- The above information will help accurately determine the water consumed, the corresponding energy consumed and also the performance or efficiency of the existing hot water service.

LOAD CALCULATIONS (EXAMPLES)

RESIDENTIAL DWELLINGS -	HOUSEHO	LD	
Number of Persons	4		
Number of Showers Per Person Per Day	2		
Total Number of Showers Per Day	8		
Total Hot Water Per Shower @ @ 600 C	18		Liters
Total Hot Water For Showers		144	Liters/Day
Hand Washes Per Person Per Day	2		
Total Number of Hand Washes	8		
Hot Water Per Hand Wash @ 600 C	2		Liters
Total Hot Water For Hand Wash		16	Liters/Day
Number of Meals Per Day	3		
Hot Water Per Dish Wash @ 60° C	10		Liters
Total Hot Water For Dish Washing		30	Liters/Day
Hot Water for Laundry Per Person Per Day @ 60° C	10		Liters
Total Hot Water For Laundry		40	Liters/Day
TOTAL HOT WATER REQUIREMENT @ 60° C		230	Liters/Day

RESIDENTIAL DWELLINGS – [UAL OCCUP	ANCY	
Number of Persons	2		
Number of Showers Per Person Per Day	2		
Total Number of Showers Per Day	4		
Total Hot Water Per Shower @ @ 60° C	18		Liters
Total Hot Water For Showers		72	Liters/Day
Hand Washes Per Person Per Day	2		
Total Number of Hand Washes	4		
Hot Water Per Hand Wash @ 60° C	2		Liters
Total Hot Water For Hand Wash		8	Liters/Day
Number of Meals Per Day	3		
Hot Water Per Dish Wash @ 60° C	5		Liters
Total Hot Water For Dish Washing		15	Liters/Day
Hot Water for Laundry Per Person Per Day @ 60° C	10		Liters
Total Hot Water For Laundry		20	Liters/Day
TOTAL HOT WATER REQUIREMENT @ 60° C		115	Liters/Day

LOAD CALCULATIONS (EXAMPLES)

MINE SITE			
Number of Persons	4		
Number of Showers Per Person Per Day	2		
Total Number of Showers Per Day	8		
Total Hot Water Per Shower @ 60° C	25		Liters
Total Hot Water For Showers		200	Liters/Day
Hand Washes Per Person Per Day	2		
Total Number of Hand Washes	8		
Hot Water Per Hand Wash @ 60° C	2		Liters
Total Hot Water For Hand Wash		16	Liters/Day
Number of Meals Per Day	3		
Hot Water Per Dish Wash @ 60° C	10		Liters
Total Hot Water For Dish Washing		30	Liters/Day
Hot Water for Laundry Per Person Per Day @ 60° C	15		Liters
Total Hot Water For Laundry		60	Liters/Day
TOTAL HOT WATER REQUIREMENT @ 60° C		306	Liters/Day

CARAVAN PARK			
Number of Persons	20		
Number of Showers Per Person Per Day	2		
Total Number of Showers Per Day	40		
Total Hot Water Per Shower @ @ 60° C	18		Liters
Total Hot Water For Showers		720	Liters/Day
Hand Washes Per Person Per Day	2		
Total Number of Hand Washes	40		
Hot Water Per Hand Wash @ 60° C	2		Liters
Total Hot Water For Hand Wash		80	Liters/Day
Number of Meals Per Person Per Day	3		
Number of Meals Per Day	60		
Hot Water Per Dish Wash @ 60° C	6		Liters
Total Hot Water For Dish Washing		360	Liters/Day
Hot Water for Laundry Per Person Per Day @ 600 C	10		Liters
Total Hot Water For Laundry		200	Liters/Day
TOTAL HOT WATER REQUIREMENT @ 60° C		1360	Liters/Day

LOAD CALCULATIONS (EXAMPLES)

HOTEL			
Number of Rooms	100		
Number of Person Per Room	2		
Total Number of Persons	200		
Hot Water Per Person Per Shower @ @ 600 C	18		Liters
Hot Water Per Person For Hand Washes @ 60° C	5		Liters
Hot Water Per Person For Dish Wash (Kitchen) @ 600 C	5		Liters
Hot Water Per Person For Laundry Per Day @ 600 C	10		Liters
Total Hot Water Per Person Per Day	38		Liters
Total Hot Water For Hotel Guests		7,600	Liters/Day
Total Staff	25		
Hot Water Per Staff Per Day @ 60 ⁰ C	5		Liters
Total Hot Water Per Staff Per Day		125	Liters/Day
Hot Water Requirement Per Day @ 60° C		7,725	Liters/Day
Ring Main Losses – Small (<100m) @ 10 ⁰ C		773	Liters/Day
TOTAL HOT WATER REQUIREMENT @ 60° C		8,498	Liters/Day

HOSPITAL			
Number of Beds	100		
Hot Water Per Person Per Shower @ @ 600 C	20		Liters
Hot Water Per Person For Hand Washes @ 60° C	5		Liters
Hot Water Per Person For Dish Wash (Kitchen) @ 60° C	5		Liters
Hot Water Per Person For Laundry Per Day @ 600 C	10		Liters
Hot Water Per Person For Clinic Per Day @ 60° C	5		Liters
Hot Water in Surgery Per Person Per Day @ 600 C	5		Liters
Total Hot Water Per Person Per Day	50		Liters
Hot Water Requirement Per Day @ 60° C		5,000	Liters/Day
Ring Main Losses - Small (<100m) @ 10° C		1,500	Liters/Day
TOTAL HOT WATER REQUIREMENT @ 60° C		6,500	Liters/Day

